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Archaeological and ethnohistorical evidence suggests a link between a popu-

lation’s size and structure, and the diversity or sophistication of its toolkits or

technologies. Addressing these patterns, several evolutionary models predict

that both the size and social interconnectedness of populations can contribute

to the complexity of its cultural repertoire. Some models also predict that a

sudden loss of sociality or of population will result in subsequent losses of

useful skills/technologies. Here, we test these predictions with two exper-

iments that permit learners to access either one or five models (teachers).

Experiment 1 demonstrates that naive participants who could observe five

models Q, integrate this information and generate increasingly effective skills

(using an image editing tool) over 10 laboratory generations, whereas those

with access to only one model show no improvement. Experiment 2, which

began with a generation of trained experts, shows how learners with access

to only one model lose skills (in knot-tying) more rapidly than those with

access to five models. In the final generation of both experiments, all partici-

pants with access to five models demonstrate superior skills to those with

access to only one model. These results support theoretical predictions linking

sociality to cumulative cultural evolution.

1. Introduction
Humans may be unique among species in generating the cumulative cultural evol-

utionary processes that give rise to complex behavioural skills and technologies

[1–4]. A growing class of theoretical models suggest that the emergence of such

complex and ‘difficult to learn’ cultural traits (tools, techniques and skills), such

as many of the technologies used by hunter–gatherers, is heavily influenced

by the abilities of learners to access a larger social network of other individuals

[5–14]. On the empirical side, field evidence consistent with these models has

begun to emerge. This evidence includes analyses of the complexities of toolkits

among populations [15–17] as well as detailed studies of particular archaeological,

ethnographic and ethnohistorical cases [7,11,18–20]. Thus, technological sophisti-

cation may depend on sociality, on the size and interconnectedness of populations.

This has led some to suggest that the key differences between human ancestors

and other primates may lie in the domain of sociality and population or network

structures [21–23]. Of course, there is every reason to suspect that other factors also

influence cumulative cultural evolution in substantial ways [24–26].

Here, we test the relationship between socialityand cumulative cultural evolution

in two laboratoryexperiments, where sociality is operationalized in terms of a partici-

pant’s ability to access and learn from multiple experienced individuals (‘models’ or

‘cultural parents’). Experiment 1 tests the effect of the number of accessible models on

cumulative cultural change over successive laboratory generations using a first gen-

eration of untrained or ‘uncultured’ participants. Experiment 2 tests the effect of the

number of models on the loss of cultural complexity over successive generations by

beginning with a first generation of trained ‘highly cultured’ participants.
2. Methods
In both studies, we tested the transmission of knowledge and skill using under-

graduates (n ¼ 100) randomly assigned to one of two treatments (one model
milselvam
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Figure 1. (a) An illustration of the experimental design. (b) The target image for Experiment 1. Note the words ‘forty two’ at the base of the image and the red
glow around these words and the circle. Participants were not required to recreate the dimension arrows. (c) The knots used in Experiment 2. Participants were asked
to tie this set-up to two chairs.
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versus five models) each with 10 generations (five participants per

treatment per generation). In the one-model treatment, partici-

pants in generations two to 10 had access to information from

only one participant from the previous generation (one ‘cultural

parent’). In the five-model treatment, participants in generations

two to 10 had access to information from all five participants

in the previous generation (five ‘cultural parents’). Figure 1a
illustrates our experimental design. Participants’ performance

was incentivized with additional entries into a $100 raffle when

(i) they performed relatively better in their own generation, and

(ii) those they transmitted to emerged as the best performer in

the next generation. Thus, participants made the most money

when both they and their cultural offspring performed the best

in their respective generations (see the electronic supplementary

material for details on payments). Below, we first briefly present

the methods for each experiment, and then move onto the results.

In Experiment 1, participants with little or no prior experience

in image editing were asked to recreate a target image using a

complex editing program called GIMP [27]. We also supplied a

second version of the target image with annotated measurements

(as shown in figure 1b). In all generations, participants were

given sufficient time (up to 15 min) during which they were per-

mitted to write up to two pages of information to assist the next

generation. All generations, except generation 1, were provided

with the written information, the target image (with and without
rspb20132511—29/10/13—18:49–Copy Edited by: J. Tamilselvam
measurements) and a screenshot from their cultural parent or

parents and given up to 25 min to recreate the target image.

Those in the one-model treatment had access to only one partici-

pant’s information and image, whereas those in the five-model

treatment had access to all five participant’s information and

images. Participants’ (n ¼ 100, 71 female) ages ranged from 15 to

35 (M ¼ 20.52, s.d.¼ 2.80). Additional participant information is

provided in the electronic supplementary material.

Each participant’s final image was rated in two ways. First,

each image was assessed by one of three human raters using a

scale designed to measure the level of reproduction of various

features of the image model (alignment, size, shape, gradient,

etc.). Scores on our scale ranged from 0 to 59, which we rescaled

to a percentage from 0 to 100. Inter-rater reliability, calculated on

a range of images from a pilot study and images from partici-

pants who exceed our maximum experience threshold, was very

high (ICC (3,1) ¼ 0.997). The electronic supplementary material

provides information on the training and evaluation of raters.

Second, as a check on these human-ratings, final images were

also assessed using a similarity algorithm ([35,36]; see the electronic

supplementary material for details). The algorithm computes the

normalized cross correlation metric, which yields a value between

0 and 1 for the two images by pairing them pixel by pixel and cal-

culating a correlation. Ratings from this algorithm and our human

raters were highly correlated (r¼ 0.87, p , 0.001). However,
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because the algorithm does not assess features clearly relevant to

human minds (e.g. the target’s degree of red glow, misalignment

of image, etc.), we ran our analyses below using the above

human rating scale, and rely on the algorithm’s overall similarity

measure only as a robustness check.

In Experiment 2, participants were asked to tie a system of

connected knots commonly used in rock-climbing. Genera-

tion 1 was trained by the experimenter using standardized

instructions to become ‘experts’ at tying this system of knots.

Participants in all generations were given sufficient time (up to

20 min) during which they were permitted to create an instruc-

tional video detailing the tying and placement of each knot. To

reduce experimenter bias, a camera was strapped to each partici-

pant’s forehead, providing a first person view. All subsequent

generations were provided with the video from the previous gen-

eration as well as the participant’s score and were given up to

50 min to learn and recreate the knot system. The one-model

treatment had access to only one participant’s video and score,

whereas the five-model treatment had access to all five partici-

pant’s videos and scores. Participants’ (n ¼ 100, 71 female) ages

ranged from 17 to 37 (M ¼ 20.48, s.d. ¼ 3.15; further details in

the electronic supplementary material).

To assess the performance of each participant, their final knot

system was assessed by one of two human raters, using a custom

rating scale inspired by a scale used to assess sutures when train-

ing surgeons [28]. The scale was used to assess the deviation of

each knot and knot position from the original model. The scale

scores ranged from 0 to 37, which we rescaled to percentages

(see the electronic supplementary material for the complete

scale). Inter-coder reliability, calculated on a range of knots

from a pilot study, was very high (a ¼ 0.99). The electronic sup-

plementary material provides information on the training and

evaluation of raters.
3. Results
(a) Experiment 1
Figures 2 and 3 show the results of Experiment 1, where par-

ticipants in generation 1 were novices. Over 10 generations,
rspb20132511—29/10/13—18:49–Copy Edited by: J. Tamilselvam
those who could observe the five models substantially

improved in their image editing skills, in recreating the

target image. Those who saw only one model demonstrated

no significant improvement; if anything, they showed a

decline in skill level. As the final row of figure 3 shows, the

least skilled learner in the 10th generation of the five-model

treatment is superior to the most skilled learner in the 10th

generation of the one-model treatment.

To further investigate the treatment differences visible in

figures 2 and 3, we regressed the standardized image rating

scores on the main effects and interaction of generation

number and treatment, controlling for age and male (gen-

der with male¼ 1). The electronic supplementary material,

table S3 contains the full series of regression models we exam-

ined. Of these models, the model controlling for age and male

had the highest adjusted R2 and is reported in table 1, but

the results are robust across all models. By alternating the

dummy coding on treatment, we are able to directly compare

the effect of generation on image rating score for each treat-

ment. Our regression model (table 1) estimated an average

improvement of 0.23 s.d. (equivalent to 7 percentage points)

per generation in similarity-to-target image ( p , 0.001), indi-

cating the accumulation of skill. By contrast, there was only

a small and non-significant effect of generation in the one-

model treatment, a decline of 0.06 s.d. (2 percentage points)

per generation ( p ¼ 0.19).

Participants in the five-model treatment of Experiment 1

were given access to the images and notes from all five partici-

pants in the previous generation and could have learned from

any or all of them. To examine selective learning biases, we

broke down each participant’s performance into 18 binary

(present, absent) components, which gave us 810 (non-inde-

pendent) observations for participants in generation two to

10. Then, using binary logistic regression, we regressed the

presence or absence of each component in the participant’s

image on the presence or absence of each component in the

participant’s potential models, controlling for age, male and



target image

five-modelone-model

forty two

Figure 3. Experiment 1 final images from participants in the one-model and five-model treatments. The target image is included at the top for comparison. The
columns are chains of participants in the one-model treatment. Rows are generations going from top (generation 1) to bottom (generation 10). An obvious difference
between the two treatments can be seen in the last row.

Table 1. OLS regression of standardized image rating scores on the main
effects and interaction of generation and treatment (one-model/five-
model), controlling for male (gender, male ¼ 1) and age (standardized).
By alternating the dummy coding of treatment, we directly compare the
effect of generation by looking at the generation coefficients. In the five-
model treatment, image ratings improve by 0.23 s.d. per generation. By
contrast, in the one-model treatment, there is no significant improvement
in image ratings (and a possible decline).

one-model five-models

generation 20.06 (0.04) 0.23 (0.04)**

age 20.09 (0.08) 20.09 (0.08)

male 20.36 (0.19) 20.36 (0.19)

one-model 20.96 (0.36)**

one-model generation* 0.28 (0.06)**

five-model 0.96 (0.36)**

five-model generation* 20.28 (0.06)**

(intercept) 0.11 (0.27) 20.85 (0.26)**

R2 0.353 0.353

adj. R2 0.319 0.319

N 100 100

*p , 0.05; **p , 0.01.
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generation. Each potential model was ranked from best

(model 1) to worst (model 5). This allowed us to examine

how participants weighted the relative importance of their

potential models. We used clustered robust standard errors

(810 observations in 45 clusters) to control for common var-

iance within each participant’s scores. The results (table 2)

indicate that the features present in the best model were the

best predictor of the participant’s score. However, the three

next best models were also predictive of participants’ scores,

indicating that participants were also looking at other

models. This suggests that participants were using a skill or

success bias, with the greatest weight on the most skilled

model, but with some non-zero weight on everyone else

except for the worst model. Such patterns offer some evidence

that participants were combining information from multiple

models, thereby generating novel recombinations of elements

not possessed by any single one of their teachers. Of course,

given the error in the estimates, we cannot be too confident

in the differences observed between models 2, 3 and 4.
(b) Experiment 2
Figure 4 shows the results of Experiment 2, where participants

in the first generation were knot-tying experts. The knot-tying

skills of those in the five-model treatment decline more slowly

than in the one-model treatment over the first three



Q3

Table 2. Binary logistic regression of the presence or absence of each
component of the target image in each participant’s attempted image on the
corresponding component in each of the five potential models.Q7 We control
for non-independence between participant’s imageQ4 components using
clustered robust standard errors. The odds ratios reported reveal a large and
significant bias for the best model, but also biases for the three next best
models. We control for generation, male and age (see the electronic
supplementary material, table S4 for full regression model). Robust standard
errors in parentheses.

experiment 1

model 1 3.910*** (1.258)

model 2 2.481*** (0.867)

model 3 1.747* (0.557)

model 4 2.187*** (0.583)

model 5 0.893 (0.260)

pseudo-R2 0.283

n 810 (45 clusters)

*p , 0.1; **p , 0.05; ***p , 0.01.

100

90

80

70

60

m
ea

n 
kn

ot
 r

at
in

g

50

40

30

20

10

0 1 2 3 4 5 6 7 8 9 10
generation

one model

five models

Figure 4. Mean knot-tying skills over 10 generations for the one-model and five-
model treatments in Experiment 2. Scores rescaled to between 0 and 100, where
100 is a perfect score. The loss of skills is fastest in the first three generations and
much faster in the one-model treatment than in the five-model treatment.
Generations 4 – 10 suggest different equilibria where the five-model treatment
has an equilibrium at twice the skill level of the one-model equilibrium.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

20132511

5253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

ARTICLE IN PRESS
generations, and then level off to a higher average knot skill

than those in the one-model treatment. Meanwhile, knot-

tying skills in the one-model treatment continue to decline,

though at a decelerating rate, through to generation 10.

To further investigate the difference between the treat-

ments and generations in figure 4, we separately estimated a

series of ordinary least square (OLS) regression models for

the first three and last seven generations, controlling for age,

male, ethnicity and experience with knot-tying. The electronic

supplementary material, table S5 contains the full series of

regression models we examined. Of these, the models control-

ling for age, male and knot-tying experience had the highest

overall adjusted R2-values and are reported in table 3, but

results were robust across all models. Our regression model

(table 3) estimated that over the first three generations, the

mean skill of the five-model treatment declines by 0.25 s.d.

(equivalent to 6 percentage points) per generation ( p ¼ 0.37),

whereas the one-model treatment declines by 0.67 s.d.

(16 percentage points) per generation ( p ¼ 0.02).

From generations four to 10, table 3 shows that the mean

skill in the five-model treatment declines at a rate of 0.03 s.d.

(0.6 percentile points) per generation ( p ¼ 0.51), whereas

that in the one-model treatment declines at a rate of 0.07 s.d.

(1.2 percentile points) per generation ( p ¼ 0.20). While neither

of these rates of loss is significantly different from zero at

conventional levels, suggesting they may be approaching equili-

brium, it is worth noting that the estimated magnitude of the rate

of loss in the one-model treatment remains twice as large as that

in the five-model treatment. And, a test of joint significance

for the addition of the treatment and treatment–generation inter-

action terms to model with only main effects reveals a significant

increase in R2 from 0.19 to 0.52, F62,64 ¼ 21.6, p , 0.001 (see the

electronic supplementary material, table S6).

Assuming the generation 10 is in the vicinity of the final

equilibrium in skill, the mean skill level in the five-model

treatment is twice that of the one-model treatment. In fact,

every learner in the 10th generation of the five-model treat-

ment is superior to the most skilled learner in the 10th

generation of the one-model treatment.
rspb20132511—29/10/13—18:49–Copy Edited by: J. Tamilselvam
In Experiment 2, by contrast to Experiment 1, there was a

substantial time cost to observing models, because partici-

pants could not watch all model videos in the available

learning time and had to select fewer models from which

to learn. Casual observations suggest that most participants

watched only 1 video, or sometimes 2. For this reason, it is

not clear what the relationship should be between the various

models and the specific traits acquired by the learner, so we

do not present analyses of this.
4. Discussion
In a microsociety laboratory setting, our results confirm predic-

tions made by existing formal cultural evolutionary models

[6,7,9,11,29]. Specifically, they confirm how increasing the

number of accessible cultural models can generate greater

accumulations of technical know-how in a population, such

that every individual in the final generation of the five-model

population is more skilled than the most skilled individual in

the final generation of the one-model population and almost

all individuals in the one-model population. The results confirm

that more sociable populations can sustain more complex skills,

whereas less sociable populations gradually lose these skills

over generations.

Our more detailed analyses of Experiment 1 indicate that

learners in the five model condition learned, to at least some

detectable degree, from the top four performers, though they

did rely most heavily on the top performer among their cul-

tural parents. This is important because, by drawing ideas,

techniques and insights from different models, learners can

end up with novel recombinations that none of their cultural

parents possesses. This, in a sense, creates innovations with-

out ‘invention’, ‘creativity’ or trial and error learning [30,31].

We chose to compare the one-model and five-model treat-

ments for pragmatic reasons: one model represents the natural

lower bound, whereas five models provide a substantial

increase in model number, giving us a the best chance to

observed the predicted effect in a relatively small number of



Table 3. OLS regression of standardized knot rating scores on the generation and treatment (one-model/five-model), and their interaction, controlling for male,
age (standardized) and knot-tying experience. By alternating the dummy coding of treatment, this table directly compare the effect of generation by looking at
the generation coefficients. The loss of skill within both the first three generations and the last seven generations is twice as fast in the one-model treatment
compared to the five-model treatment. We conducted a test of joint significance of treatment and treatment – generation interaction by statistically comparing
regression models with and without these variables—see electronic supplementary material, table S6. Results indicate a statistically significant effect of
treatment and treatment – generation interaction.

one model: 1 – 3 five models: 1 – 3 one model: 4 – 10 five models: 4 – 10

generation 20.67 (0.28)* 20.25 (0.28) 20.07 (0.05) 20.03 (0.05)

five-model 0.28 (0.85)** 0.78 (0.52)**

five-model generation* 0.42 (0.38)** 0.03 (0.07)**

one-model 20.28 (0.85)** 20.78 (0.52)

one-model generation* 20.42 (0.38)** 20.03 (0.07)

age 0.07 (0.14) 0.07 (0.14) 20.02 (0.09) 20.02 (0.09)

male 0.41 (0.37) 0.41 (0.37) 0.34 (0.18) 0.34 (0.18)

sailing knot experience 0.11 (0.21) 0.11 (0.21) 0.01 (0.08) 0.01 (0.08)

climbing knot experience 0.19 (0.33) 0.19 (0.33) 0.07 (0.07) 0.07 (0.07)

(intercept) 1.40 (0.63)* 1.68 (0.65)** 20.44 (0.38) 0.34 (0.38)

R2 0.518 0.518 0.524 0.524

adj. R2 0.365 0.365 0.471 0.471

n 30 30 70 70

*p , 0.05; **p , 0.01.
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generations without escalating the learners’ costs of observing

and evaluating a large number of models. We expect the effect

of the number of models on skill level and evolutionary rate to

show diminishing returns, limited by how much time partici-

pants have to evaluate and integrate culture from multiple

models and potential contribution of additional models. We

could have just as easily used two to four models, though

we expect that the effect sizes would have been a bit smaller.

Our findings also suggest why one prior study has failed

to reveal any effects for model number on mean skill levels

[32]. The theoretical models we are testing predict that if

some skill or other cultural trait is sufficiently easy to learn

or cognitively transparent, then increasing the number of

models available to learners will have little impact over gen-

erations on mean skill level or performance [33]. We suspect

that the relative ease of the task used in reference [32], which

involved making a simple paper aeroplane, was too easy to

learn to observe the effects we found. Such findings address

any concerns that our results were the inevitable consequence

of the laboratory set-up. Future research should examine a

wider range of tasks, forms of transmission and range of

modelling treatments.

One concern with our set-up is that our participants,

motivated by money, was primarily concerned with acquir-

ing the specific skills and techniques necessary to match an

ideal type, embodied in our target image or the system of

rock-climbing knots. These tasks did not have any other

immediate practical ends in themselves, such as hoisting a

heavy object or communicating a message. While we think

that varying the degree to which participants can focus on

an immediate practical goal is well-worth exploring [34], it

is important to realize that many real and practical aspects

of culture have the match-to-target format. For example, an

Inuit making his first kayak has no chance of figuring out

all the relevant engineering principles that are implicitly
rspb20132511—29/10/13—18:49–Copy Edited by: J. Tamilselvam
embodied in a good kayak, or of knowing the kayak’s per-

formance under the extreme conditions that he will

encounter weeks or months later. But, he is likely to have

another sturdy and well-performing kayak on-hand, to

copy. Similarly, a !Kung hunter–gatherer making his arrow

poison using Diamphidia beetle larva, acaia sap, salvia and

firing can only test his poison in real-time, while pursuing

prey. Even then, the quality of his feedback on his poison’s

effectiveness will usually be murky. The best he can do in

the short-term is follow the available recipe as closely as poss-

ible. We suspect functional end goals are mostly relevant for

relatively easy tasks where individual learning can make a

big difference.

Human and non-human primate populations vary in social-

ity. Chimpanzees and gorillas have mean group sizes of 51 and

seven, respectively [35,36], and interact only with their immedi-

ate group members. By contrast, although hunter–gatherer

groups such as the Hadza live in camps of approximately 30

individuals (11.7 adults), such bands are embedded in much

larger tribal networks (approx. 500 adults; over 1000 individ-

uals) comprising many camp sites, with whom they interact

with extensively [37]. Other hunter–gatherers have similar

band sizes (e.g. !Kung, 23; Tiwi, 32; Mbuti, 104) and tribal

networks (!Kung, 726; Tiwi, 2662; Mbuti, 1496) [38]. Horticultur-

alists, such as the Yanomami, live in still larger villages of well

over 100 individuals [39] with a total population of around 15

000. Understanding the relationship between sociality and

cumulative cultural evolution is crucial to understanding the

origins and ecological success of our species [1,30,40]. Several

researchers have argued that cumulative cultural evolution, by

giving rise to the skills and know-how related to complex

tools, clothing, watercraft, fire, cooking, weapons, social norms

and water containers, effectively drove our species genetic evol-

ution over hundreds of thousands, if not millions, of years

[22,41–44]. If true, it is essential to explore how and why our
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lineage crossed the threshold into a regime of cumulative cul-

tural evolution, but others did not. This study suggests that

our sociality—our social networks, conspecific tolerance, inter-

group relations or population structure, may be what distin-

guished our ancestors from other primates, and pointed us on

a different evolutionary trajectory [8].

Auspicious social conditions for crossing the cumulative

cultural evolutionary threshold might emerge if ecological con-

ditions caused a group-living species, such as chimpanzees, to

begin pair-bonding [45]. This could stimulate the emergence of

(somewhat) peacefully interacting groups, which could increase

the size and interconnectedness of populations, opening the
rspb20132511—29/10/13—18:49–Copy Edited by: J. Tamilselvam
door to the emergence of cumulative cultural evolution. Once

the cumulative cultural evolutionary threshold is crossed, auto-

catalytic feedback between cultural learning, tool use and

sociality may kick in to synergistically drive all three [30,46].
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